新闻直报员供求信息会员
当前位置 > 首页 > 新材料 > 行业动态 > 正文内容
会自己“决策”!上交大研发出水凝胶驱动新方法,实现水下全空间的趋光性运动
文章来源:贤集网     更新时间:2023-10-24 14:39:05
水凝胶材料在生物医学领域展现了广阔的应用前景,成为当前最受关注的生物材料。然而水凝胶材料天生质弱,强度低、韧性差,成为限制其应用的瓶颈难题。尽管当前已有多种提升水凝胶力学性能的方法,例如双网络策略以及基于聚乙烯醇的结构优化策略,但这些方法无一例外涉及冗长制备流程或苛刻制备条件,限制了其临床转化应用。



近日,上海交通大学钱小石教授团队与香港大学Nicholas X. Fang教授团队合作展示了一种基于水凝胶的交通工具,可以在无约束的流体空间内跟随光子照明的方向进行方向调节。这项工作以“Self-regulated underwater phototaxis of a photoresponsive hydrogel-based phototactic vehicle”为题发表在国际顶级期刊《Nature Nanotechnology》上。



会自己“决策”的水凝胶



在海洋中,有一些漂浮的小生物能感知到水中光线的变化。它们可以根据光线的强弱,自主调整自己的运动,以便捕捉到食物、寻找繁殖的机会,并远离危险。这些生物的调整运动有很多种,包括趋光性、趋涡性、趋流性和趋化性等,让它们可以根据环境的变化,自主选择移动的方向。这种能力让它们看起来有点像在做“决策”。



要实现这种“决策”,生物体需要在受到刺激时产生驱动力,并在合适的时候停止驱动。目前,人类制造的一些人工系统也有类似的反馈控制功能,但这些功能往往需要依赖预先编程的电子电路控制,或者人为的遥控操作。 然而,如果不依赖电子控制或人工干预,仅仅使用均匀的材料,我们还很难实现像这些小生物一样,可以无拖线、自主决策地在整个空间内进行趋光性运动。这个领域仍有许多挑战等待我们去克服和研究。



在这项研究中,团队通过调整水凝胶纳米复合材料内部的光-热-机械-流体相互作用,成功实现了人工趋光性。这种趋光性不依赖于对光源或边界条件的特殊要求,通过建立负反馈回路来调控水凝胶系统的运动,PTV能够在没有明显远距离偏离的情况下追踪光线,并能够在适度而持续的光照下精确地转向复杂的路径。



考虑到PTV仅具有一个负反馈回路,因此探索涉及更多控制回路的策略可能会使这种不受约束、不需要电子元件、能够自给自足能源的材料系统具备多功能的调节行为。通过控制定制的光热纳米颗粒和聚合物基质中的微孔,作者实现了软材料的强化学力学变形。车辆迅速采取最佳姿态,并在自身周围产生定向流,从而实现强大的全空间趋光性。此外,这种趋光性使一系列复杂的水下运动成为可能。



作者证明这种多功能性是由光热流体相互作用的协同作用产生的,导致闭环自我控制和快速可重构性。这种不受束缚的、无电子设备的、环境驱动的水凝胶车辆可以根据类似于自然阳光的中等强度的照明线索,灵活地穿越障碍物,这种能力让它们看起来有点像在做“决策”。



“决策”是如何进行的?



在光照条件下,PTV利用定向光子能量引发温度、流场和几何形态上的非对称性。光子诱导的多场可逆非对称性使PTV能够对任何入射方向做出响应,从而产生可提供动力的向光流体运动,并自发地采取最佳姿态进行低阻力的向光游动。为了避免因受热表面引起的上升流而产生的偏移运动,PTV能够自适应地增强受热表面的对流换热,从而为纠正方向偏差提供负反馈。此智能系统采用一种快速驱动和恢复的刺激响应水凝胶为基质材料,对来自不同方向的光照能做出快速响应。高灵敏度和可逆的化学机械反应使其能够在温和的光照条件下(<1 Sun),实现对全空间的向光性和精准操纵。



一旦受到光照,PTV的三种非对称特性同时被激发,从而形成新的温度梯度、流场梯度和机械应变梯度。为了实现长期且对等的驱动和恢复,作者通过控制材料制备的化学和物理过程来改变凝胶的孔隙度。在16°的角度下,冰模板辅助下混合交联的水凝胶柱在不到一秒的时间内完全恢复原状,其恢复速度与其收缩速度相当,比之前报道的最佳值快了30倍。



PTV中内嵌的光热响应材料r-GO和AuNPs有效地将光能转化为热能,当从上方照射光线时,PTV迅速上升至水面。表面的温升引发向上的对流,传递了方向信息。PIV测试结果与CFD模拟结果相当吻合。水平光照时,右侧的水平辐照引起温度和流场的非对称性,在光照一侧产生更高的温度和流速。被加热的表面反映了入射光的方向信息,但也会引发上升流,使PTV向右上方移动。CFD和PIV结果表明,流场中的大部分是向上对流,这可能导致水平光线照射时的准确性降低。



在白光照射下,与r-GO耦合的PTV表现出自主向上和向右的跃迁,然后回到底部,实现了水平趋光性。分析结果表明,PTV加速时遇到环境冷流体的速度更快,随之而来的冷却终止了上升流,使PTV重新回到正常运动轨迹。大量的对流传热向环境中释放的热量(q=-hA(T_s-T_f ))超过了输入光子的功率(P),因此引发了表面温度的振荡,从而构建了负反馈回路。在阳光照射下,PTV始终停留在容器底部。



一旦受到光照,PTV立即开始游向水面。与AuNPs结合的PTV同样也能够向光源方向跳跃。由于光束宽度相对较窄,上升的PTV会通过远离照明的方式降低表面温度,从而完成负反馈循环。作者定量研究了无量纲理查森数(Ri=Gr/Re2)来探究自然对流和强制对流的相对权重。尽管在两种情况下努塞尔特数(Nu=16.9)相当,但激光照射时的Ri为144.0(≫1),从而证实了自然对流在冷却中占主导地位。而在宽光束照射下,Ri=6.8,说明速度诱导的混合对流在自适应调节中扮演重要角色。



桨状触手获取动量时容易与激光束错位,由光-热-流体驱动的PTV在较长距离上表现出鲁棒的趋光性却几乎没有方向偏差。将六根偏离中心位置的触手巧妙地级联,PTV能够自适应的旋转前进。响应性触手会向光源方向弯曲并抵消倾覆力矩,从而在PTV爬上坡道时提供额外的稳定性。由于聚合物基体自发诱导的非对称性和快速恢复特性,PTV的定向响应是即时的。PTV具备灵活操控的能力的同时还具有出色的方向和位置分辨率。在恒定光源的连续变化角度下,PTV可以完美地模仿中国书法汉字“自然”中复杂的笔画运动。与在水面浸没时的趋光性不同,由于马兰戈尼对流效应,当PTV浮在气水界面上时,会避开光线。



关于上海交通大学钱小石教授团队



上海交通大学机械与动力工程学院钱小石教授课题组主要从事先进机-电-热耦合功能材料、器件与系统方面的研究。



钱小石,上海交通大学机械与动力工程学院教授。曾任美国Nascent Devices Inc.公司副总裁、首席技术官。长期从事机-电-热耦合的功能材料与系统研究,研制高性能压电/磁电复合材料、电活性高分子、电卡制冷材料,并制造多台先进柔性触感系统、磁电传感与能源回收设备以及固态制冷系统样机。2018年回国任职,相关研究成果已陆续在Nature、Science等高水平学术期刊发表。



目前课题组主要从事电卡制冷材料与系统,铁电、介电换能与储能材料与器件,软物质自主驱动系统,可重构光热超材料等方面的基础研究,研究经费充足,国内、国际合作广泛。



此次研究依托材料科学、热科学、光学、流体力学、机械制造等多个领域的交叉合作,上海交通大学机械与动力工程学院的孟光教授、陈江平教授、吴亚东副研究员、汪华苗副教授、杨光副教授、刘振宇副教授以及南方科技大学机械与能源工程系的葛锜副教授也参与了该项研究。研究工作得到了国家重点研发计划项目,国家自然科学基金项目,上海市自然科学基金项目,机械系统与振动全国重点实验室开放课题等项目的支持。

原文链接:https://www.xianjichina.com/special/detail_534393.html
来源:贤集网
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
   相关新闻