构建宏观超润滑界面(摩擦系数在0.001级别甚至更低)可显著降低能源消耗、减少由摩擦引起的经济损失。然而,较长的磨合期可能造成摩擦副表面出现严重磨损。目前,缩短磨合期的策略多针对Si3N4、SiO2、Al2O3等陶瓷摩擦副。如何在短时间内实现轴承钢摩擦副表面的超润滑是亟需解决的技术难题。
前期,中国科学院兰州化学物理研究所固体润滑国家重点实验室研究员王道爱团队,设计、开发了一系列基于天然有机酸(单宁酸、植酸)的液体超润滑材料。该团队利用天然有机酸、多元醇和水分子之间的协同效应,使氮化硅/玻璃等摩擦副界面达到超润滑所需的磨合期缩短至1s内。然而,具有短磨合期的钢/钢摩擦副超润滑材料设计仍然存在挑战。 近日,该团队设计出适用于轴承钢摩擦副的液体超润滑材料。研究通过将柠檬酸热解制得的碳量子点(CQDs)添加到聚乙二醇水溶液中,实现了钢/钢摩擦副界面的超润滑(摩擦系数为0.005),其磨合期仅有44s,同时轴承钢表面的磨损率降低了77%(图1)。摩擦过程中轴承钢表面形成的润滑膜包括吸附在摩擦副表面的CQDs和摩擦化学反应生成的铁氧化合物,在摩擦过程中作为边界润滑剂有效减少了表面粗糙峰之间的直接接触(图2)。此外,研究结合分子动力学模拟发现,摩擦副表面的CQDs吸附膜在流体动力润滑区域可减少润滑剂分子链与摩擦副之间的相互作用力,从而降低滑动过程中的摩擦阻力(图3)。这一成果为在较短磨合期内实现轴承钢摩擦副表面的超润滑提供了新的设计思路。 这一液体超润滑材料体系有望应用于金属切削加工、轴承润滑等领域,相关实验技术已申请发明专利一项。当前,该团队正在积极推进该技术的应用转化。 相关研究成果以Accelerating Macroscale Superlubricity through Carbon Quantum Dots on Engineering Steel Surfaces为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到国家自然科学基金、中国科学院战略性先导科技专项、中国科学院前沿科学重点研究计划和甘肃省重大科技专项等的支持。
|